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Abstract—An accurate assessment of the cardiovascular system
and prediction of cardiovascular diseases (CVDs) are crucial.
Cardiac blood flow data provide insights about patient-specific
hemodynamics. However, there is a lack of machine learning
approaches for a feature-based classification of heart-healthy
people and patients with CVDs. In this paper, we investigate the
potential of morphological and hemodynamic features extracted
from measured blood flow data in the aorta to classify heart-
healthy volunteers (HHV) and patients with bicuspid aortic
valve (BAV). Furthermore, we determine features that distinguish
male vs. female patients and elderly HHV vs. BAV patients. We
propose a data analysis pipeline for cardiac status classification,
encompassing feature selection, model training, and hyperpa-
rameter tuning. Our results suggest substantial differences in
flow features of the aorta between HHV and BAV patients.
The excellent performance of the classifiers separating between
elderly HHV and BAV patients indicates that aging is not
associated with pathological morphology and hemodynamics.
Our models represent a first step towards automated diagnosis
of CVS using interpretable machine learning models.

Index Terms—cardiovascular disease, bicuspid aortic valve,
machine learning, feature selection

I. INTRODUCTION

Worldwide, most people die of cardiovascular diseases
(CVDs) [1]. Therefore, an accurate assessment of the cardio-
vascular system and prediction of CVDs are crucial. There
appear to be relationships between hemodynamics and cardiac
pathologies [2], [3] for which patient-specific flow information
is required. Time-dependent flow data in a 3D volume can be
acquired non-invasively using four-dimensional phase-contrast
magnetic resonance imaging (4D PC-MRI) [4]. The flow
information can be evaluated in any vessel section. Thus, 4D
PC-MRI has great potential to improve the diagnosis, follow-
up, and treatment decisions of CVDs.

There are visual exploration techniques for single 4D PC-
MRI data sets [5], [6] involving different time-dependent flow
features. However, developing guidelines on interpreting 4D
PC-MRI data requires the analysis of cohorts instead of single
data sets. Therefore, we study how reliable we can predict
disease status with supervised classification models learned on
morphological and hemodynamic features extracted from 4D

PC-MRI data of heart-healthy volunteers (HHV) and patients
with bicuspid aortic valve (BAV). To support physicians in
diagnosing and assessing the severity of BAV defects and
understanding better the variety of physiological hemodynamic
and morphological features, we defined the following research
questions. RQ 1: Do heart-healthy volunteers and BAV pa-
tients differ regarding the extracted features [7]? RQ 2: Are
there predictive features that can separate between elderly
heart-healthy volunteers and BAV patients? This question is
motivated by the challenge in clinical practice to distinguish
between a non-pathological decline in cardiac function with
increasing age [8] (healthy aging) and the onset of early stages
of BAV, solely based on flow velocity. RQ 3: Do female
and male heart-healthy volunteers differ w.r.t. morphological
and hemodynamic attributes? Since women generally have a
smaller heart, a smaller blood volume, and a faster heartbeat
than men [9], the identification of further differences related
to aortic blood flow might suggest the necessity to stratify
diagnostic procedures or treatment pathways by gender. We
train separate models for the healthy subgroups and BAV
patients based on the combination of several feature selection
methods and learning algorithms. Model training is combined
with a feature selection step to identify correlations between
the multitude of flow features and reduce them to a meaningful
subset. Finally, we study and compare the informativeness of
each parameter towards the outcomes.

II. RELATED WORK

There is extensive research on machine learning (ML) in
cardiology, for example, to support computer-aided diagnosis
and prediction of heart diseases [10]. Dinh et al. [11] created a
classification model ensemble from different base classifiers in
cardiovascular disease diagnosis. They found patient features
such as age, blood pressure, body weight, and chest pain to be
most predictive. Similarly, Miao et al. [12] trained an ensemble
classifier for coronary heart disease diagnosis using data
gathered from four different medical institutions. Wojnarski
et al. [13] identified three distinct phenotypes of BAV patients
based on vascular morphology via data clustering. While
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acknowledging the high potential of ML, Russak et al. [14]
observed that case studies of successful integration of these
technologies into clinical practice are still sparse. They further
suggested guidelines to increase acceptance and ultimately
to enable clinical adoption of ML techniques in cardiology,
including a project development driven by unsolved clinical
questions rather than by the available data only, incorporating
experts from multiple disciplines, using complete patient data
gathered in a standardized format, improving the interpretabil-
ity of complex ML models, and training clinicians on ML
fundamentals to increase familiarity with these concepts.

Deep learning has become increasingly popular for cardio-
vascular applications [15]–[17]. In comparison to classic ML
algorithms, deep neural networks often exhibit superior accu-
racy and work on raw image data, thus reducing the necessity
to carefully extract features using domain knowledge, which is
often too time-consuming or expensive. However, the “black-
box” nature of deep neural networks is rather unsuited for
inference, which is crucial, especially in medical applications.
Thus, some studies create more parsimonious models using
interpretable features to understand better characteristics of
anatomical structures predictive for the outcome. Niemann et
al. [18] studied the potential of 22 morphological features
extracted from angiographic images for a data-driven rupture
risk classification in intracranial aneurysms. Post-hoc interpre-
tation steps revealed the most predictive features, including
a dome point angle, ellipticity index, and aneurysm volume.
In addition to morphology, Detmer et al. [19] investigated
hemodynamic features and patient features for rupture risk
assessment and found that ruptured aneurysms exhibit larger
and more complex flow features.

Often, the number of extracted features is large, which often
leads to unnecessarily complex models. Selecting a subset of
features can help to reduce computational complexity, increase
model performance, and enhance model interpretability [20],
[21]. For example, Latha et al. [20] combined ensemble
classifiers with a preceding feature selection step to improve
heart disease prediction accuracy.

III. MEDICAL BACKGROUND

The aorta is the largest artery in the human vascular system,
which allows to measure a meaningful signal for blood flow
analysis. During systole, oxygenated blood passes from the left
ventricle (LV) via the aortic valve (AV) into the ascending
aorta, see Figure 1. From the right ventricle, deoxygenated
blood is pumped through the pulmonary valve into the pul-
monary artery. During diastole, the AV is closed to prevent
blood from flowing back into the LV.

A. BAV and Related Flow Behavior

Hemodynamic parameters are an indicator for the emer-
gence and progression of CVDs. CVDs change the vessel
morphology, which promotes flow abnormalities [22]. The
bicuspid aortic valve, describing a fusion of two leaflets, is
the most common congenital heart defect [23].

aorta

pulmonary artery

right atrium aortic valve

right ventricle
left ventricle

pulmonary valve

left atrium

Fig. 1: Anatomy of the human heart.

Several studies investigated the influence of a BAV on flow
patterns in the ascending aorta [3], [7], [24]. Compared with
healthy volunteers, patients more often had a helical blood
flow, often accompanied by an eccentric main blood flow
and increased wall shear stress as well as flow velocities and
vortex volumes. However, there was no computer support for
parameter selection, which made the analysis process time-
consuming and error-prone. Thus, a detailed analysis of the
flow parameters regarding several cohorts remains a challenge.

B. Data Acquisition and Parameter Extraction

A 3 T MR scanner was used to acquire the 4D PC-MRI data
with a maximum expected velocity of 1.5 m/s per dimension.
The spatio-temporal resolution is 1.77 × 1.77 × 3.5 mm3 \
50 ms resulting in 19 to 35 slices and 18 to 33 time steps.

To analyze a 4D PC-MRI data set, the software Blood-
line [5] is used. During pre-processing, image artifacts are
corrected, and the thoracic aorta is segmented. Then, the aortic
flow is automatically calculated based on the MRI data. To
evaluate the heart function 197 hemodynamic parameters are
computed [5]. A distinction is made between parameters that
describe the vortical flow and those representing the laminar
flow. In addition, planes were placed along the aorta. For each
plane, different properties of the vortical flow are measured,
called “in-plane” parameters. The maximum, minimum, me-
dian, and mean value per parameter is determined over all
planes and time steps. Furthermore, so-called “through-plane”
parameters, which characterize the laminar flow, are deter-
mined at each plane over time, and the maximum, minimum,
median, and mean value per parameter is calculated.

So far, 90 data sets of heart-healthy volunteers and 22 BAV
patients have been evaluated with Bloodline. These 112 data
sets serve as input for our classification pipeline.

IV. METHODS

Our data analysis pipeline is depicted in Figure 2. After
extracting the morphological and hemodynamic parameters
from raw 4D PC-MRI images, we build separate models
for each of three classification tasks (CT), i.e., models that
distinguish (CT 1) HHV vs. BAV patients, (CT 2) elderly
HHV vs. BAV patients and (CT 3) female HHV vs. male
HHV. For this purpose, we make use of a wide range of
feature selection methods and classification algorithms. This
section describes the pipeline’s main steps, including data pre-
processing, feature selection, classification, and evaluation.
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Fig. 2: Schematic overview of our data analysis pipeline.

A. Data Pre-Processing

We remove 103 highly correlated features using the algo-
rithm of Kuhn and Johnson [25] with a threshold of 0.9.
Secondly, we eliminate near-constant features, where the most
frequent value occurs ≥ 20 times as often as the second most
frequent value and where the number of unique values is
smaller than 10. We remove 3 such features, resulting in a
total of 94 features for classification.

For the CT 2, we divide the feature “age” into two intervals,
which we refer to as “younger” and “elderly”, respectively. We
determine the cutoff value as age with maximum information
gain [26] towards cardiac status. Discretization leads to a
subgroup of 78 younger subjects up to 47 years (60 HHV,
18 BAV patients) and a subgroup of 34 elderly subjects (30
HHV, 4 BAV patients). The data is then split randomly into a
training set (70%) and a test (30%) set.

B. Classification Algorithms and Feature Selection

We use the following five classification algorithms: CART
decision tree (DT) [27], random forest (RF) [28], gra-
dient boosted trees (GBT) [29], support vector machine
(SVM) [30], and least absolute shrinkage and selection op-
erator (LASSO) [31]. We bundle classifier training with
a preceding feature selection step to reduce computational
complexity, increase model performance, and enhance model
interpretability. We use three filter and four wrapper methods:
correlation-based feature selection (CFS) filter, χ2-test filter,
information gain filter (IG), sequential forward search (SFS)
wrapper, sequential backward search (SBS) wrapper, genetic
search (GS) wrapper, and random search (RS) wrapper.

C. Evaluation

We train separate models for each combination of fea-
ture selection method (7) and classification algorithm (5),
yielding a total of 35 models. Hyperparameter selection for
the feature selection methods was performed using 10-fold
stratified cross-validation. We use accuracy as the primary
evaluation measure for CT 3, which exhibits a balanced class
distribution (45 female HHV vs. 45 male HHV). Accuracy
(ACC) quantifies the ratio of correctly labeled observations.

Due to the class imbalance for the first two CTs (90 HHV
vs. 22 BAV patients; 30 elderly HHV vs. 22 BAV patients),
we opt for Cohen’s kappa, defined as κ = po−pe

1−pe
, where po

represents ACC and pe is the probability for agreement among
the vector of true class labels and the class labels assigned by
random prediction. We also report the area under the receiver
operating characteristic curve (AUC). A receiver operating
characteristic curve illustrates the true positive rate (TPR) and
false positive rate (FPR) for different prediction thresholds of
a binary classifier. The AUC ranges from 0 (0% TPR, 100%
FPR) to 1 (100% TPR, 0% FPR), where a classifier making
random predictions achieves an AUC of 0.5.

V. RESULTS

We summarize our classification results in Table I and
show the hyperparameter tuning results for feature selection
in Table II.

A. CT 1: heart-healthy volunteers (HHV) vs. BAV patients
The best model (SFS + RF) achieves κ = 0.969 (ACC =

93.9%, AUC = 0.796). Three features were selected:
• Time-to-Peak-Vorticity: the time point during the heart

cycle where the overall volume of blood swirling within
a vortex in the aorta reaches its peak. (in ms; 0 ms =
begin of heart cycle).

• Time-to-Peak-In-Plane-Velocity: the time point during
the heart cycle when the max. velocity of in-plane blood
flow occurs in the aorta (ms).

• Peak-Systolic-In-Plane-Mean-Velocity: the max. mean
in-plane blood flow velocity over all planes and systolic
time points (m/s).

Figure 3 highlights considerable differences between HHV
and BAV patients for these three features. In particular,
BAV patients exhibit a much smaller range in Time-to-Peak-
Vorticity (min: 130 ms, max: 312 ms) than HHV (min: 0
ms, max: 1573 ms). Similarly, whereas all HHV show a
Peak-Systolic-In-plane-Mean-Velocity of 0.32 m/s or lower,
variability within the BAV subgroup is much larger (min: 0.12
m/s, max: 0.60 m/s).

B. CT 2: elderly HHV vs. BAV patients
The best model (SFS + SVM) correctly classifies all 15 test

instances (κ = 1, ACC = 100%, AUC = 1). Five features were
selected:
• Peak-Systolic-Mean-Velocity: the highest of the mean

through-plane blood flow velocities over all planes and
systolic time steps during an aortic cardiac cycle (m/s).

• Time-to-Peak-Systolic-Through-Plane-Mean-Velocity:
the time point during the systole where the mean
through-plane velocity over all planes peaks (ms).

• Time-to-Peak-Diastolic-In-Plane-Mean-Velocity: the time
point during the diastole where the mean in-plane velocity
over all planes peaks (ms).

• Diastolic-Median-Right-Rotation-Volume-Rel : the me-
dian of the volume within the vessel containing right-
handed rotational flow over all diastolic time steps relative
to the total vessel volume (%).



TABLE I: Classification results. For each classification task
(CT), the number of features d and test performance of the
five best combinations of feature selection method (FS) and
classification algorithm (CA) are depicted.

CT # FS + CA d κ ACC AUC

CT 1
HHV vs.

BAV patients

1 SFS + RF 3 0.969 0.939 0.796
2 SFS + GBM 3 0.962 0.939 0.819
3 SFS + SVM 3 0.901 0.969 0.891
4 SFS + DT 2 0.639 0.878 0.935
5 CFS + GBM 19 0.796 0.939 0.898

CT 2
elderly HHV vs.

BAV patients

1 SFS + SVM 5 1.000 1.000 1.000
2 SFS + RF 3 0.925 0.866 0.722
3 SFS + DT 1 0.777 0.800 0.571
4 SFS + GBM 1 0.777 0.800 0.571
5 CFS + DT 6 0.705 0.866 0.833

CT 3
female HHV vs.

male HHV

1 SFS + SVM 3 0.384 0.692 0.562
1 SFS + GBM 3 0.384 0.692 0.562
3 SFS + RF 2 -0.076 0.692 0.384
4 CFS + GBM 3 0.153 0.576 0.577
5 SFS + DT 2 0.076 0.538 0.553

TABLE II: Tuning grid of feature selection (FS) hyperpa-
rameters. Optimal values in boldface.

FS Hyperparameter Candidate values

χ2 Relative number of selected features {0, 1
9 , 2

9 , 3
9 , . . ., 1}

IG Relative number of selected features {0, 1
9 , 2

9 , 3
9 , . . ., 1}

SFS Minimum improvement in performance
when adding a feature α

{0.005, 0.01, 0.02, 0.1}

SBS Maximum decrease in performance
when removing a feature β

{10−3,10−2,10−1}

GS Number of iterations {10, 20, 30}
GS Initial number of feature subsets {10, 15, 20}
RS Number of iterations {10, 50, 100, 200}

• Peak-Mean-Vorticity-Pressure: the highest mean pressure
within vortex regions over all time steps (mmHg).

Figure 4 shows differences in the distribution of diastolic-
Median-Right-Rotation-Volume-Rel between elderly HHV
(mean 0.51 ± std. dev. 0.01) and BAV patients (0.61 ± 0.09).

C. CT 3: female vs. male HHV

The combination of SFS and RF achieves best generaliza-
tion performance (ACC = 69.2%, κ = 0.384, AUC = 0.562), cf.
Table I. Just as with the first CT, three features were selected:
• Peak-Velocity: the max. velocity of blood flow in the

aorta over a cardiac cycle (m/s).
• Peak-Systolic-VelocityQ99 : the max. velocity of blood

flow (taken from the 99.5% quantile range to discard
outliers due to noise) that occurs in the aorta during the
systolic phase of the cardiac cycle (m/s).

• Time-to-Peak-Diastolic-Through-Plane-Velocity the time
point during the diastole when the velocity of the through-
plane blood flow peaks in any of the planes in the aorta
(ms; 0 ms = begin of heart cycle).

Although these three features yield the best model, the plot
matrix in Figure 5 shows that female and male HHV have
quite similar value distributions.
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Fig. 3: Plot matrix for features of the best model for CT
1 (SFS+RF). Pairwise relationships of the features selected
for the best combination of feature selection and classification
algorithm are shown for CT 1. Scatterplots illustrate the rela-
tionship between the feature labeled at the top of the column
(x-axis) and the feature labeled at the left of the row (y-axis).
Colored lines illustrate the strength of the linear relationship,
and labels display the Spearman correlation coefficient (ρ).
Convex hulls illustrate the overlap between the two subgroups
in the depicted 2D feature space. Histograms on the main
diagonal show the distribution of a feature for each class label.

VI. DISCUSSION

Our classification results suggest substantial differences in
aortic flow characteristics between HHV and bicuspid aortic
valve (BAV) patients. For several features, BAV patients show
higher variation and larger value ranges. To verify the validity
of our models, we discussed the results with a radiologist
(coauthor) who specializes in cardiac imaging and has 23 years
of professional experience. He also provided the data sets.

The possible aortic valve stenosis due to the altered valve
morphology in BAV patients means that the heart must exert
more force to open the valve and pump the blood further due to
this resistance. As a result, flow velocity increases significantly
compared to healthy individuals, especially during systole. The
substantial increase in flow velocity favors the formation of
vortical blood flow within the aorta. Consequently, the forward
movement of the flow along the centerline decreases, and there
is more flow that rotates within a plane, which is also reflected
in the results for CT 1.

The feature Peak-Systolic-In-Plane-Mean-Velocity repre-
sents the velocity of flow in a plane. In HHV, it is less
than 30 cm/min, and the average flow velocity is 1.5 m/sec.
Accordingly, the flow velocity in a plane in BAV patients is
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Fig. 4: Plot matrix of the best model’s features for CT 2
(SFS+SVM). See Figure 3 for a description.
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Fig. 5: Plot matrix for features of the best model for CT
3 (SFS+SVM). See Figure 3 for a description.

at least one third of the average flow velocity, which is a very
high value. These circumstances explain the good separation
of HHV and BAV patients based on Peak-Systolic-In-Plane-
Mean-Velocity. The second feature Time-to-Peak-In-Plane-
Velocity measures the time of maximum flow velocity in one
plane. The radiologist assumes that this is the corresponding
time for the Peak-Systolic-In-Plane-Mean-Velocity. Due to

the high flow velocity in BAV patients, vortical flow occurs
earlier during the cardiac cycle. Therefore, the Time-to-Peak-
In-Plane-Velocity occurs earlier than in healthy volunteers.
Nevertheless, the radiologist was pleasantly surprised to find
that only a small number of features provided good class
separation. He emphasized that determining the corresponding
threshold values is of paramount importance to support the
diagnosis of CVDs.

Concerning RQ 2, we could not confirm that elderly HHV
have similar flow characteristics to BAV patients in the current
data set. However, Diastolic-Median-Right-Rotation-Volume-
Rel seems to provide a good separation of the two groups. In
HHV, slight vortical flow occurs only during systole, whereas
hardly any vortical flow occurs during diastole because the
aortic valve is fully closed, which is also the case in older
participants. BAV patients, on the other hand, show increasing
vortical flow, even during diastole, which is why a differ-
entiation of both groups was possible here. Since the best
models perform excellently with only three to five features,
we conclude that our approach to extract interpretable features
is useful for diagnosing BAV patients.

Regarding RQ 3, we conclude that although there are minor
differences between female and male HHV, morphological and
hemodynamic features alone are not sufficient to distinguish
the sexes with high accuracy, which was also in accordance
with the expectations of our radiologist. Although men have,
on average, a larger cardiac and blood volume than women,
this does not substantially affect the derived morphological
and hemodynamic characteristics. Nevertheless, such detailed
analysis of HHV is essential to derive normal values and thus
reliably detect abnormal values.

Although we consider our results promising, there are some
limitations. First, our data set could be subject to a selection
bias. The HHV group includes only volunteers between 18
and 65 years old. Even older subjects were excluded be-
cause they already had an enlargement of the aortic diameter
that, although not yet requiring treatment, deviated from a
physiological morphology. Accordingly, our calculated age
cutoff of 47 years for classification of elderly HHV and
BAV patients was relatively low, which may explain the good
separability. In addition, BAV patients were not differentiated
according to pronounced sequelae, aortic valve stenosis, and
aortic valve insufficiency. This could also influence the results.
We used Information Gain to determine the cutoff value of
47 years and divide the subjects into two age-based subsets.
Alternatively, we could have tested multiple thresholds to
choose the cutoff value which yields the best classification
performance. However, a study of patients with coronary
artery disease [32] also showed that patients aged ca. 50
years and older had similar ventricular diastolic filling to
the control group, whereas there were greater differences
between groups in younger subjects. In addition, our holdout
evaluation estimates may be influenced by the relatively small
test set, especially for CT 2 where the test set contains only
15 observations. In the future, we would like to expand our
data analysis pipeline with a nested-cross validation scheme



that involves tuning of feature selection hyperparameters and
calculation of generalization performance simultaneously, thus
reducing the variability of the performance estimates.

VII. CONCLUSION AND FUTURE WORK

We presented a data analysis pipeline for classification of
BAV versus HHV patients. Therefore, we extracted a large
number of morphological and hemodynamic parameters from
4D PC-MRI data sets. We integrated various feature selection
methods with classifier training to reduce the number of fea-
tures, aiming to build accurate yet parsimonious classification
models. Our results showed differences between BAV patients
and HHV with respect to hemodynamics, such as the higher
blood flow velocity in BAV patients.

Furthermore, we applied our pipeline to two other classifi-
cation tasks. First, we investigated whether there are morpho-
logical and hemodynamic differences between elderly HHV
and BAV patients. We were able to confirm this based on
the classifiers’ high performance, although our results must be
validated on another independent data set. Second, we trained
a model that distinguishes between female and male HHV
based on the extracted parameters. We did not identify features
capable of predicting gender accurately.

In the future, we plan to expand our pipeline to other
pathologies, such as diseases of other cardiac vessels, such
as tetralogy of Fallot, which primarily involves changes in
the pulmonary artery. This may contribute to improving the
diagnostic workflow. Furthermore, we want to expand our
data collection to include more elderly HHV (≥ 60 years
old) to check whether healthy aging people show similar
characteristics to BAV patients. Moreover, we plan to evaluate
the treatment success, e.g., after an aortic valve replacement,
to examine whether the flow normalizes after surgery, by
applying our models to new, treated cases. This would provide
insights into whether the flow returns to normal after the
insertion of an artificial heart valve.
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